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Abstract- As the Navy expands its dependence on underwater 

communication between sensors, operating in areas where 
turbulent turbid water layers are present; there exists a need to 
accurately predict prior to sensor deployment how they will 
operate in these environments. The benthic nepheloid layer (BNL) 
is an example of a moving turbid water layer in the ocean. The 
BNL is characterized by changing vertical thickness, 
concentration and speed of the suspended material. Acoustic 
propagation and hence acoustic communication and system 
performance will be affected when operating in these areas. The 
suspended material will alter the sound speed, density and the 
attenuation of the medium. Thus what was once a non-dispersive 
quiescent environment is now a moving dispersive environment. 
The numerical solution of acoustic pulse propagation through 
dispersive moving media requires the inclusion of attenuation 
and its causal companion, phase velocity.  For acoustic 
propagation in a linear dispersive quiescent medium, Szabo [J. 
Acoust. Soc. Am., 96, 491-500 (1994)] introduced the concept of a 
convolutional propagation operator that plays the role of a casual 
propagation factor in the time domain. The operator has been 
incorporated in the linear wave equation for quiescent media. 
Additionally it has been used to study propagation and scattering 
from such widely diverse media as bubble plumes in the ocean 
and ultrasound propagation in human tissue. In this work, this 
method is extended to address acoustic propagation in dispersive 
moving media. The development of the modified wave equation 
for sound propagation in dispersive media with inhomogeneous 
flow will be described, along with an example. The resulting 
modified wave equation is solved via the method of finite 
differences. 

I. INTRODUCTION 

Traditionally underwater acoustic propagation assumes a 
quiescent environment. That is, since the acoustic signal in 
sea-water travels nominally at 1500 m/s, the travel time 
between the source and some arbitrary receiver is less than, or 
is assumed to be less than, the time it takes the environment to 
change appreciably enough such that the acoustic field 
experiences this change. There are however situations where 
this assumption doesn't hold. For example when a benthic 
nepheloid layer (BNL) is present. A BNL is formed when 
sediments lying on the ocean floor are resuspended due to 
water motion. The water could be in motion due to currents, 
tides or via the shoaling and breaking of internal waves on the 
continental shelf. The BNL is dynamic, characterized by 
changing vertical thickness, concentration and speed of 
resuspended material. This increase in concentration of 
material suspended in the water column creates a dispersive 

environment. When the environment/medium is dispersive, 
causality dictates that the propagating field suffers from 
attenuation. The attenuation is frequency dependent. In 
addition to this frequency dependent attenuation is the causal 
phase velocity. When the acoustic source is time limited, i.e. 
an acoustic pulse, it is composed of many frequencies. Thus to 
accurately model such a situation requires that the solution be 
able to take into account the appropriate attenuation and phase 
velocity of all frequencies making up the source signature. 
Direct modeling in the time domain is highly desirable, since 
it allows for more direct and efficient numerical solutions, and 
causality is always fulfilled.  
 
Based on an idea set forth by Blackstock [1] in the realm of 
non-linear acoustics, Szabo proposed a way to include 
attenuation and dispersion effects directly in the time domain 
for both non-linear [2] and linear propagation [3-5] in linear 
media through the inclusion of the so-called causal 
convolutional propagation operator. By deriving a time 
domain version [3] of the Kramer-Kronig relationships (K-K), 
[6] he arrived at a general form for the operator. Szabo's 
operator was originally defined in the context of lossy media 
obeying a frequency power law attenuation. Waters et al. [7] 
showed that Szabo's operator could be used for a broader class 
of media (as originally postulated by Blackstock), provided 
the attenuation possess a Fourier transform in a distributional 
sense.  
 
Norton and Novarini [8] clarified the use of the operator and 
its relationship to the time domain propagation factor. The 
time domain propagation factor is the parameter that is 
directly connected with the dispersive properties (attenuation 
and dispersion) of the medium. The modified wave equation 
that contains the causal convolutional propagation operator is 
rewritten incorporating the time domain propagation factor 
explicitly. The capability of the time domain propagation 
factor to correctly incorporate the dispersive traits of the 
medium into the linear wave equation was verified by solving 
the one-dimensional scalar, inhomogeneous wave equation in 
a dispersive medium via a finite-difference-time-domain 
(FDTD) scheme [8]. It was shown that for propagation in an 
isotropic dispersive (homogeneous) medium, attenuation and 
dispersion could correctly be taken into account while staying 
in the time domain. Therefore, if attenuation versus frequency 
is known (either from measurements or theoretically) and 
posses a generalized Fourier transform, then the time domain 
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propagation factor (and so the corresponding causal 
convolutional propagation operator) can be obtained. And 
hence causal propagation can be modeled directly in the time 
domain.    
 
Norton and Novarini [9] have extended the technique to non-
isotropic media (i.e. media in which the dispersive effects vary 
spatially). Excellent agreement between the FDTD with 
dispersion and the analytic result were observed for both the 
forward and backscattered field. Enhancements to the 
numerical code included making all difference approximations 
of the derivatives (both space and time) fourth order accurate 
as well as making the absorbing boundary conditions (utilizing 
the Complementary Operator Method) fourth order accurate 
[10].  Norton and Novarini [11] have utilized this code to 
investigate the scattering from and propagation though bubble 
clouds in the ocean. The results show that the presence of the 
bubble clouds introduces a great deal of ringing that stays near 
the surface. And that there can be a scattering effect from the 
bubble cloud before the scattering event at the air/water 
interface, resulting in returns from the bubble cloud arriving at 
a receiver prior to the interface scattering return. Norton and 
Novarini [12] have also applied this code to scattering and 
propagation through biological tissues, showing the effect that 
dispersion has on the backscattered signal. The target 
composition varied from brain, heart, kidney, liver, and tendon. 
Norton [13,14] has extended the technique to include 
heterogeneous dispersive media, recasting the modified wave 
equation so that it has a spatially varying bulk modulus and 
density. And finally Norton and Purrington [15] have replaced 
the loss term found in the Westervelt equation with the time 
domain propagation factor. They showed that by employing 
the time domain propagation factor the full dispersive 
characteristics of the medium are properly incorporated into 
the solution, which was lacking using the traditional loss term. 
 
The paper is divided into the following sections. First, the 
linear wave equation for sound in fluids with inhomogeneous 
flow will be developed. Next, the introduction of dispersive 
effects into the previous developed wave equation will be 
accomplished through the development and inclusion of the 
causal time domain propagation factor. Followed by a one-
dimensional example, showing proof of concept. The resulting 
modified linear wave equation is solved via the method of 
finite differences. 

II. WAVE EQUATION FOR SOUND IN FLUIDS WITH UNSTEADY 
INHOMOGENEOUS DISPERSIVE FLOW 

A. Unsteady Inhomogeneous Flow 
The following development is based on the work by Pierce 

[16] and Godin [17]. Starting with the full non-linear fluid-
dynamic equations for compressible fluid of uniform 
composition in the absence of dissipation can be written as 

 
Dv
Dt

+
1

ρ
∇p − g = 0  

 

Dρ
Dt

+ ρ∇• v = 0,  

      (1) 
Ds

Dt
= 0, 

 
p = p ρ,s( ). 

 
The field variables are expressed as sums of ambient 

quantities (Subscript 0) and acoustic perturbations (primed 
quantities) so that the linearized acoustic equations can be 
formed. That is 

 
p = p0 + ′ p x,t( ) 

 
ρ = ρ0 + ′ ρ x,t( ) 
      (2) 
v = v0 + ′ v x,t( ) 
 
s = s0 + ′ s x,t( ). 
 
One thus obtains, 
 

Dt ′ v + ′ v • ∇v0 +
1

ρ0

   
      

   
      ∇ ′ p − ′ ρ 

ρ0
2

   
      

   
      ∇p0 = 0,  

 
Dt ′ ρ + ′ v • ∇ρ0 + ′ ρ ∇• v0 + ρ0∇• ′ v = 0, 
      (3) 
Dt ′ s + ′ v • ∇s0 = 0, 
 

′ p = c 2 ′ ρ +
∂p

∂s
   
   

   
   

0

′ s . 

Where, Dt =
∂
∂t

+ v0 • ∇ is the time derivative following 

the ambient flow. Simplification of the above linearized 
equations results when neglecting terms of 2nd order and 
higher in 1/L and 1/T, where L is the length scale over which 
ambient field quantities have appreciable spatial variation and 
T is the corresponding time scale. This along with the 
introduction of a potential results in 

 
p = −ρDtΦ,     (4) 

 
′ v = −∇Φ + O L−1( )+ O T −1( )  (5) 

 
where ′ v  is the acoustic part of the flow velocity 

perturbation. One finally obtains the following expression 
describing acoustic propagation in non-dispersive unsteady 
inhomogeneous flow, 

 



1

ρ
∇• ρ∇Φ( )− Dt

1

c 2 DtΦ
   
   

   
   = 0  (6) 

 
where c is a reference velocity and ρ is the ambient density.  

B. Time Domain Propagation Factor 
The wave equation Eq. (6) developed in the last section 

does not account for a dispersive medium. Utilizing the 
approach as set forward by Szabo [3] an additional term will 
be introduced to the wave equation Eq. (6) developed in the 
last section. The details of the development of the time 
domain propagation factor can be found in Ref [8]. The 
resulting wave equation appropriate for a medium exhibiting 
dispersive unsteady inhomogeneous flow is the following, 

 

Dt

ρ x,z( )
κ x,z( )DtΦ x,z,t( )   

      
   
       

−
1

ρ x,z( )∇• ρ x,z( )∇Φ x,z, t( )( )  (7) 

+
ρ x,z( )
κ x,z( )

∂ Γ t( )∗ Φ x,z,t( )[ ]
∂t

= δ x − xs( )δ z − zs( )s t( )
 

where the spatial and temporal dependence is explicitly 
written. The bulk modulus of the medium is denoted by 
κ x,z( )  and ρ x,z( )  is the density. The two deltas on the 
RHS are Dirac delta functions and s(t) is the source signature 
at the source location (xs,zs). The time domain propagation 
factor Γ τ( ) is equal to 

 
Γ τ( )= −2  1+ τ( )FT −1 α ω( ){ },  (8) 
 
where α ω( ) is the attenuation as a function of frequency. 

The attenuation and phase velocity are causally connected 
through a Hilbert transform. Thus including the attenuation 
will also include the phase velocity in the calculation. The step 
function 1+ τ( ) is given as 

 

1+ τ( )=

0 τ < 0
1

2
τ = 0

1 τ > 0.

   (9) 

 
It should be noted that Szabo’s original use of the operator 

was limited to a power law attenuation form, excluding some 
values of the exponent. Waters et al. [7], using distributional 
analysis, showed that any attenuation form can be used as long 
as an associated causal phase velocity exists. 

 

III. NUMERICAL EXAMPLE 

 

A. Simple Nepheloid Layer 
In this section a numerical experiment will be carried out in 

two-dimensions (X – horizontal axis and Z – vertical axis). 
The environment consists of 45m deep static water layer over 
lying a 15m deep dispersive moving layer overlying a 10m 
deep dispersive sediment layer. Figure 1 depicts the 
environment. The source consisting of ten periods of a 5kHz 
sinusoidal burst that is Gaussian weighted is located at a range 
of 50m and 1m above the sediment layer (59m depth). The 
source is located within the dispersive nepheloid layer. Four 
receivers are also located within this layer, located at the 
following locations, R1 (10m, 59m); R2 (25m, 59m); R3 (75m,  
59m); R4 (90m, 59m). Note that R1 and R4 are equidistance 
from the source and R2, R3 likewise are equidistance from the 
source. The reference sound speed in the water, including the 
dispersive nepheloid layer, is 1500m/s and in the sediment, 
1700m/s. The density in the non-moving water layer is 
1000kg/m3 and in the dispersive nepheloid layer it varies 
linearly from 1000kg/m3 to 1050kg/m3. The density in the 
sediment is 2000kg/m3.  

 

 
Figure 1. Graphic depiction of environment. 

 
B. Attenuation 

The attenuation is assumed to consist of a power law 
dependence on frequency, that is, 

 
α f( )= kf y .     (10) 
 
Where k is a constant dependent upon the medium. For sand 

it is 0.3(dB/m/kHz). And the exponent can vary between 1 and 
2. The dispersive nepheloid layer is divided into three equal 
layers of 5m thickness each. It is assumed that the density of 
resuspended sediments increases linearly with depth thus the 
dispersive characteristics will likewise vary with depth. 
Additionally the resuspended sediment will assume to be silty-
clay. Thus three different attenuation profiles will be modeled, 
using progressively larger values of the constant k. The values 
for the constant are 0.01 (dB/m/kHz), 0.05 (dB/m/kHz), and 
0.075 (dB/m/kHz). A linear dependence on frequency is 
assumed for all cases, (i.e. y=1). Figure 2 depicts the 
attenuation verses frequency for the dispersive nepheloid layer 
and Figure 3 depicts the associated causal phase velocity. 
Figure 4 and 5 depicts the attenuation and phase velocity 
verses frequency for the sediment layer. Thus there will be 
three different time domain propagation factors describing the 
dispersive characteristics of the dispersive nepheloid layer and 



one time domain propagation factor describing the dispersive 
sediment layer. 

 

 
Figure 2. Attenuation vs. Frequency for the Three Depth 

Segments of the Nepheloid Layer. 
 

 
Figure 3. Phase Velocities vs. Frequency for the Three 

Depth Segments of the Nepheloid Layer. 
 

 
Figure 4. Attenuation vs. Frequency for the Sediment Layer. 
 

 
Figure 5. Phase Velocity vs. Frequency for the Sediment 

Layer. 
 

C. Flow Velocities 
The two dimensional flow velocities used within the 

dispersive nepheloid layer is based on measurements collected 
during a 2009 experiment conducted in the Gulf of Mexico 
[18]. Figure 6 and Figure 7 depicts the X and Z component of 
the flow velocity. The positive X-axis direction is to the right 
while the positive Z-axis direction is downward. As can be 
seen from Figure 6, the water flow is to the left and from 
Figure 7 the water will vary in the vertical direction based 
upon the depth within the dispersive nepheloid layer. 

 

 
Figure 6. X- Axis Component of Fluid Velocity 

 

 
Figure 7. Z- Axis Component of Fluid Velocity 



 

IV. RESULTS 

The source is turned on and the times series is collected at 
the four receiver locations. Figure 8 depicts the signal 
amplitude at receivers R1 (solid black line) and R3 (solid red 
line). If the time series at R2 and R4 were also plotted, they 
would be superimposed upon R1 and R3 since the flow 
velocities are so low and the propagation distances are small.  
However to observe the difference in the time series of R1, R4 
and R2, R3 they were differenced and then Fourier 
Transformed to the frequency domain and then plotted. Figure 
9 depicts the differences between the time series at R1, R4 
(solid black line) and R2, R3 (dotted black line). First note 
that the amplitude is different for both sets. This is because of 
the different propagation distances. The distance is less to R2 
and R3 thus the signal is stronger (i.e. suffered less attenuation) 
than the signals collected at R1 and R4. Also note that the 
peak frequency is no longer 5kHz, it is down shifted due to the 
linear frequency dependence of the attenuation (higher 
frequencies are attenuated more). The only difference between 
the collected time series at R1, R4 and R2, R3 is that for R1 
and R2 the signal propagated with the flow velocities and for 
R3, R4 it propagated against the flow velocities. To insure that 
the numerical model was not introducing a bias to the result, 
the flow velocities were zeroed out and the source once again 
turned on. The differences were again taken between R1, R4 
and R2, R3 and are shown on Figure 9 as a red line and a blue 
line respectively. Note that both results show no difference 
between the time series. This is to be expected if the 
environment is invariant with regard to the propagation 
direction. Thus showing that there is no bias being introduced 
to the solution. Therefore the observed differences between 
equidistance receivers are due solely to the presence of the 
flow velocities.  

 

 
Figure 8. Time Series at Receivers R1 and R3. 

 
 
 
 
 

 

 
Figure 9. Difference of Times Series at Equidistance 

Receivers from the Source. 
 

V. CONCLUSIONS 

Direct Time Domain modeling of a simple two-dimensional 
dispersive nepheloid layer has been performed via the 
numerical solution of a modified linear wave equation. It was 
observed that for even small flow velocities, the associated 
time series at receivers located equidistance from the source 
showed appreciable differences. 
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